A Self-Organizing Auto-Associative Network for the Generalized Physical Design of Microstrip Patches
نویسنده
چکیده
The current work deals with the efficient physical design of patch antennas given the desired parameters like resonant frequency , feed point position , substrate thickness , relative permittivity , input impedance (= + ), and efficiency . Based loosely on the analogy of perception of the human brain, a neurocomputing network has been designed, consisting of two distinct phases, namely, the training phase and the application phase. The training phase accepts as input the exhaustive set of the said parameters for patches of different shapes and sizes and determines the optimized processors (processors that adequately define the information topology of the input data set) from the exhaustive training instances using a set of information extracting self-organizing neural networks. The outputs of the training phase are sets of processors, being the number of different shapes of patches taken into consideration. The application phase determines the shape and size of a microstrip antenna when its desired parameters are presented to the network as the external input. This is achieved by comparing the external input with each set of processors, hence determining the cost due to each comparison. A cost matrix is thus formed which when passed through an optimization network gives the best match and hence the shape and shape determining attributes of the patch whose parameters had been passed as external input.
منابع مشابه
A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks
Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...
متن کاملA Neural Network-Based Cryptographic System
We present a cryptographic system based on Pollack’s recursive auto-associative memory (1991). This self-organizing learning system offers many unique properties not found in traditional crypto systems. This paper examines the methodology and issues of such a system.
متن کاملA Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)
This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...
متن کاملA Hierarchical Self-organizing Associative Memory for Machine Learning
This paper proposes novel hierarchical self-organizing associative memory architecture for machine learning. This memory architecture is characterized with sparse and local interconnections, self-organizing processing elements (PE), and probabilistic synaptic transmission. Each PE in the network dynamically estimates its output value from the observed input data distribution and remembers the s...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001